Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommendation system assumes the input is the result of classification over the entire dataset, not just a subset. If the confusion matrix is based on test data classification, the recommendation may not be valid.
| Actual | Predict
|
| Class | 0 | 1 | 2 | Description |
| ACC | 1.0 | 0.84211 | 0.84211 | Accuracy |
| AGF | 1.0 | 0.74475 | 0.91575 | Adjusted F-score |
| AGM | 1.0 | 0.86736 | 0.84838 | Adjusted geometric mean |
| AM | 0 | -6 | 6 | Difference between automatic and manual classification |
| AUC | 1.0 | 0.8125 | 0.89655 | Area under the ROC curve |
| AUCI | Excellent | Very Good | Very Good | AUC value interpretation |
| AUPR | 1.0 | 0.8125 | 0.8 | Area under the PR curve |
| BB | 1.0 | 0.625 | 0.6 | Braun-Blanquet similarity |
| BCD | 0.0 | 0.07895 | 0.07895 | Bray-Curtis dissimilarity |
| BM | 1.0 | 0.625 | 0.7931 | Informedness or bookmaker informedness |
| CEN | 0 | 0.24409 | 0.25 | Confusion entropy |
| DOR | None | None | None | Diagnostic odds ratio |
| DP | None | None | None | Discriminant power |
| DPI | None | None | None | Discriminant power interpretation |
| ERR | 0.0 | 0.15789 | 0.15789 | Error rate |
| F0.5 | 1.0 | 0.89286 | 0.65217 | F0.5 score |
| F1 | 1.0 | 0.76923 | 0.75 | F1 score - harmonic mean of precision and sensitivity |
| F2 | 1.0 | 0.67568 | 0.88235 | F2 score |
| FDR | 0.0 | 0.0 | 0.4 | False discovery rate |
| FN | 0 | 6 | 0 | False negative/miss/type 2 error |
| FNR | 0.0 | 0.375 | 0.0 | Miss rate or false negative rate |
| FOR | 0.0 | 0.21429 | 0.0 | False omission rate |
| FP | 0 | 0 | 6 | False positive/type 1 error/false alarm |
| FPR | 0.0 | 0.0 | 0.2069 | Fall-out or false positive rate |
| G | 1.0 | 0.79057 | 0.7746 | G-measure geometric mean of precision and sensitivity |
| GI | 1.0 | 0.625 | 0.7931 | Gini index |
| GM | 1.0 | 0.79057 | 0.89056 | G-mean geometric mean of specificity and sensitivity |
| HD | 0 | 6 | 6 | Hamming distance |
| IBA | 1.0 | 0.39062 | 0.95719 | Index of balanced accuracy |
| ICSI | 1.0 | 0.625 | 0.6 | Individual classification success index |
| IS | 1.54749 | 1.24793 | 1.34104 | Information score |
| J | 1.0 | 0.625 | 0.6 | Jaccard index |
| LS | 2.92308 | 2.375 | 2.53333 | Lift score |
| MCC | 1.0 | 0.70076 | 0.68983 | Matthews correlation coefficient |
| MCCI | Very Strong | Strong | Moderate | Matthews correlation coefficient interpretation |
| MCEN | 0 | 0.26532 | 0.26439 | Modified confusion entropy |
| MK | 1.0 | 0.78571 | 0.6 | Markedness |
| N | 25 | 22 | 29 | Condition negative |
| NLR | 0.0 | 0.375 | 0.0 | Negative likelihood ratio |
| NLRI | Good | Poor | Good | Negative likelihood ratio interpretation |
| NPV | 1.0 | 0.78571 | 1.0 | Negative predictive value |
| OC | 1.0 | 1.0 | 1.0 | Overlap coefficient |
| OOC | 1.0 | 0.79057 | 0.7746 | Otsuka-Ochiai coefficient |
| OP | 1.0 | 0.61134 | 0.72672 | Optimized precision |
| P | 13 | 16 | 9 | Condition positive or support |
| PLR | None | None | 4.83333 | Positive likelihood ratio |
| PLRI | None | None | Poor | Positive likelihood ratio interpretation |
| POP | 38 | 38 | 38 | Population |
| PPV | 1.0 | 1.0 | 0.6 | Precision or positive predictive value |
| PRE | 0.34211 | 0.42105 | 0.23684 | Prevalence |
| Q | None | None | None | Yule Q - coefficient of colligation |
| QI | None | None | None | Yule Q interpretation |
| RACC | 0.11704 | 0.1108 | 0.09349 | Random accuracy |
| RACCU | 0.11704 | 0.11704 | 0.09972 | Random accuracy unbiased |
| TN | 25 | 22 | 23 | True negative/correct rejection |
| TNR | 1.0 | 1.0 | 0.7931 | Specificity or true negative rate |
| TON | 25 | 28 | 23 | Test outcome negative |
| TOP | 13 | 10 | 15 | Test outcome positive |
| TP | 13 | 10 | 9 | True positive/hit |
| TPR | 1.0 | 0.625 | 1.0 | Sensitivity, recall, hit rate, or true positive rate |
| Y | 1.0 | 0.625 | 0.7931 | Youden index |
| dInd | 0.0 | 0.375 | 0.2069 | Distance index |
| sInd | 1.0 | 0.73483 | 0.8537 | Similarity index |
Generated By PyCM Version 4.2